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Scaled Dot-Product Attention

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf



Example

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf



Mul=-Head A?en=on

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf



Transformer

hEps://cips-upload.bj.bcebos.com/ssaE2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf



The Importance of Generation 
Order in Language Modeling

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George E. Dahl 
Google Brain

EMNLP18



Overview
• Linguistic intuition might suggest that we should first generate some 

abstract representation of what we want to say and then serialize it.

• The best ordering we tried generates function words first and content 
words last, which cuts against the idea of committing to the general 
topic of a sentence first and only then deciding exactly how to phrase 
it.



Two-pass Language Models
• Produces partially-filled sentence “templates” and then fills in missing 

tokens
• Partitioning of the vocabulary into a set of first-pass and second-pass

tokens to generate sentences.

𝑦
𝑦(#)

𝑦(%)

Template:first-pass tokens + a special placeholder token

Second-pass tokens



Two-pass Language Models

• Two copies of the Transformer model
• Neural language model 𝒑𝟏 : The first copy just generates 

the template, so it has no encoder.
• Condi=onal transla=on model 𝒑𝟐 : The second copy is a 

sequence-to-sequence model that translates the template 
into the complete sentence.

Sentenceàtemplate templateàfinal
no encoder Seq2Seq



Two-pass Language Models
template



Results
• It is easier to first decide something about its syntacWc structure.
• It is preferable to delay commiXng to a rare token for as long as possible as all 

subsequent decisions will then be condiWoning on a low-probability event. 



Insertion Transformer:
Flexible Sequence Generation 

via Insertion Operations 
Mitchell Stern, William Chan,  Jamie Kiros, Jakob Uszkoreit

Google Brain, University of California, Berkeley
ICML19



Inser=on Transformer
• 𝑥 : source canvas (sequence)
• 𝑦 : target canvas (sequence)
• *𝑦+ : hypothesis canvas at time t
• 𝒞 : content vocabulary (token vocabulary for sequences)
• 𝑙 : locations ∈ [0, | *𝑦+|]



Insertion Transformer Model
• Full Decoder Self-Attention
• Remove causal self attention

• Slot Representations via Concatenated Outputs
• Adding special marker tokens at the beginning and end of the 

decoder input to extend the sequence length by two.
• Take the resulting n + 2 vectors in the final layer and concatenate

each adjacent pair to obtain n + 1 slot representations.



Model

• Joint content-loca=on distribu=on

• Joint distribu=on using a condi=onal factoriza=on

matrix of slot representations

learnable query vector 𝑙-th row of H

flatten this matrix into a vector



Contextualized Vocabulary Bias

context vector

shared bias

Global bias



Training and Loss Functions
• LeQ-to-Right
• Example : (x, y)
• Sample a length 𝑘~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0, 𝑦
• Create a new data point ((x, =𝑦 = (𝑦#, … , 𝑦@)), 𝑦@A#)
• Loss : classificaWon loss (negaWve log-likelihood)
• Note : only concerns about the last posiLon to insert



Balanced Binary Tree
• Parallelism



Balanced Binary Tree
• Example : (𝑥, 𝑦)
• Sample a length 𝑘~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0, 𝑦
• Sample a random subsequence of 𝑦 of length 𝑘： =𝑦

1. Shuffle 𝑦
2. Extract the first 𝑘
3. Reorder



Soft binary tree loss

𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5

𝑦GH 𝑦GHIJ 𝑦KH…

span of tokens from the target 
output yet to be produced

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ↓
𝑤T(𝑖) ↑



Uniform



Balanced binary tree and uniform losses



Greedy Decoding
• Choose the action with the highest probability

• sequence finalization
• until an end-of-sequence token gets selected

• slot finalization
• restrict the argmax to locations whose maximum-probability 

decision is not end-of-slot
• Until the model predicts an end-of-slot token for every location.



Parallel Decoding
• For each location 𝑙

• slot finalization

：

joint distribuWon

factorization



Non-Monotonic Sequential 
Text Generation

Sean Welleck , Kiante ́ Brantley, Hal Daume ́ III, Kyunghyun Cho

New York University, University of Maryland, College Park
Microsoe Research, Facebook AI Research

CIFAR Azrieli Global Scholar 

ICML19 



Overview
• Recursively generaWng words to its lee and then words to its right, 

yielding a binary tree. 
• Learning is framed as imitaWon learning, including a coaching method

which moves from imitaWng an oracle to reinforcing the policy’s own 
preferences

Level-order In-order



Imita=on Learning
• Imitation Learning with Recurrent Neural Networks
• Learning to Search Better than Your Teacher ICML15
• https://zhuanlan.zhihu.com/p/25688750
• https://blog.csdn.net/WASEFADG/article/details/83651126
• https://www.quora.com/What-is-imitation-learning

https://zhuanlan.zhihu.com/p/25688750
https://blog.csdn.net/WASEFADG/article/details/83651126
https://www.quora.com/What-is-imitation-learning


Notation
• Vocabulary V𝑉 = 𝑉 ∪ < 𝑒𝑛𝑑 >
• State space V𝑉∗

• State 𝑠 ∈ 𝑆 corresponds to a sequence of tokens from V𝑉
• Init state: empty sequence <>
• End state: < 𝑒𝑛𝑑 >
• AcWon 𝑎 : select an element from vocab and append to the state
• 𝜏(𝑡): maps from in-order to level order
• Policy 𝜋(𝑎|𝑠)



Challenge

• The sequences 𝑌 alone only tell us what the final output sequences of 
words should be, but not what tree(s) should be used to get there. 



Imitation Learning
• The first step, an oracle policy’s acWon is to produce any word 𝑤 that appears anywhere in 𝑌.
• All words to the lee of 𝑤 in 𝑌 are generated recursively on the lee (following the same 

procedure), and all words to the right of 𝑤 in 𝑌 are generated recursively on the right.
• The oracle is non-determinisWc (many “correct” acWons are available at any given Wme), we 

inform this oracle policy with the current learned policy, encouraging it to favor acWons that are 
preferred by the current policy.



Background: Learning to Search 

Learning to Search Better than Your Teacher ICML15



Loss
• 3 𝔼
• draw states 𝑠 according to the state distribuWon induced by 𝜋Gb
• compute cost-to-go under 𝜋cd+, for all possible acWons 𝑎 at that 

state.
• 2 𝔼
• running 𝜋 for t-many steps 

• 1 𝔼
• for one instance 

321



Cost Measurement 
• when dealing with recurrent neural network policies using a cost 

funcWon more analogous to a cross-entropy loss can be preferred 
• use a KL-divergence type loss, measuring the difference between the 

acWon distribuWon produced by 𝜋 and the acWon distribuWon 
preferred by 𝜋cd+. 
• first sampling one training sequence, running the roll-in policy for t 

steps, and compuWng the KL divergence at that state 
using 𝜋∗ (reference 𝑜𝑟 oracle )as 𝜋cd+. Learning corresponds to 
minimizing this KL divergence iteraWvely with respect to the 
parameters of 𝜋. 



Roll-In Policies 
• In most formal analyses, the roll-in policy is a stochastic mixture of 

the learned policy 𝜋 and the oracle policy 𝜋∗

• Experimentally, it has often been found that simply using the oracle’s 
state distribution is optimal 

Learning to Search BeEer than Your Teacher ICML15



Oracle Policies 

• Uniform Oracle. 𝑝f = 1/𝑛
• Coaching Oracle

• preferring acWons that are preferred by the current parameterized policy 

• Annealed Coaching Oracle(𝛽 from 1 to 0)



Word Reordering Examples 



Inser=on-based Decoding 
with automa=cally Inferred 

Genera=on Order
JiataoGu, QiLiu, KyunghyunCho

Facebook AI Research
New York University 



Motivation
• L2R is not necessarily the optimal option for generating sequences.
• For instance, people sometimes tend to think of central phrases first 

before building up a whole sentence.



Orders as Latent Variables 
• 𝑃j is the set of all the permutations of (1, … , 𝑇 )
• 𝜋 = (𝑧%, 𝑧m, … 𝑧j, 𝑧jA#) ∈ 𝑃j
• 𝑦n = { 𝑦%, 𝑧% , … , (𝑦jA#, 𝑧jA#)}, (𝑦j, 𝑧j) represents the 𝑡 −
𝑡ℎ generated token and its absolute position 
• Two special tokens 
• 𝑦s, 𝑧s = < 𝑠 >, 0 、 𝑦#, 𝑧# = (</𝑠 >, 𝑇 + 1)

• Object

𝑦jA% =< 𝑒𝑜𝑑 >



Relative Representation of Positions 
• 𝑟G+: the relaWve-posiWon representaWons of token 𝑖 at decode step 𝑡
• 𝑟G+ is a vector
• Value : 0, 1, -1

• Matrix 𝑅+ = [𝑟s+, 𝑟#+, … , 𝑟++] shows the relaWve-posiWon 
representaWons of all the words in the sequence. 
• Mapped back to the absolute posiWon
• Update 



Inser=on-based Decoding 
• Given𝑦s:+ and 𝑟s:+
• Predict 𝑦+A# and 𝑟+A#
• Note : only concerns about the 𝑦@ which has been selected
• 𝑠 = −1 if 𝑦+A# is on the left of 𝑦@, and 𝑠 = 1 otherwise. 



Insertion-based Decoding 



Transformer-InDIGO
• Relative position-based self-attention



Transformer-InDIGO
• Word & Position Prediction 



Transformer-InDIGO



Learning
• This is intractable since we need to enumerate all of the 
𝑇! permutations of tokens. 
• Maximize the evidence lower-bound (ELBO) of the original objective 

by introducing an approximate posterior distribution of generation 
orders 𝑞(𝜋|𝑥, 𝑦), which provides the probabilities of latent generation 
orders based on the ground-truth sequences 𝑥 and 𝑦: 



Searched Adaptive Order (SAO) 
• beam-search in the space of all the permutaWons of the target 

sequence 
• Sub-sequence：
• Lee words：
• corresponding posiWon 
• select top-B sub-sequences as the new set B for the next step. 



Levenshtein Transformer
Jiatao Gu, Changhan Wang, and Jake Zhao (Junbo) 

Facebook AI Research
New York University

Tigerobo Inc



Levenshtein Distance
4 = Levenshtein Distance(Saturday, Sundays)

1. Saturday → Sturday // delete the first a
2. Sturday → Surday // delete the first t
3. Surday → Sunday // replace r with n
4. Sunday → Sundays // add s at the end



Overview
• Humans can revise, replace, revoke or delete any part of their 

generated text.
• Atomic operations : insertion and deletion
• Not only generation but also sequence refinement allowing dynamic 

length changes.
• Partially autoregressive model



Problem Formulation
• Markov Decision Process (MDP)

Agent Environment
𝜀

Edit acWon 𝑎 ∈ 𝐴: {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}

𝑦 ∈ 𝑉{|}~: 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ, 𝑢𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑠𝑒𝑞 , 𝑦s ∈ 𝑦 𝑖𝑛𝑖𝑡 𝑠𝑒𝑞

𝑃𝑜𝑙𝑖𝑐𝑦 𝜋: y → 𝑃(𝐴)

Reward function : 𝑅 𝑦 = −𝐷(𝑦, 𝑦∗)

𝑟



Actions

𝑎 ∈ 𝐴: {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}

<s> </s>



Dele=on
• makes a binary decision which is 1 (delete this token) or 

0 (keep it)
• Avoid sequence boundary being broken



Insertion
• placeholder predicWon and token predicWon
• All locaWons
• the possibility of adding one or several placeholders
• for every placeholder predicted as above, replaces the 

placeholders with actual tokens in the vocabulary



Policy combination
• delete tokens – insert placeholders - replace placeholders with new 

tokens
• parallelize the computaWon within each sub-tasks.



Levenshtein Transformer



Levenshtein Transformer
• Decoder output : (ℎs, ℎ#,… ℎb), passed to three policy classifiers
1. Dele=on Classifier: scans over the input tokens (except for the 

boundaries) and predict “deleted” (0) or “kept” (1) for each token 
posiWon

2. Placeholder Classifier: predicts the number of tokens to be inserted 
at every consecuWve posiWon pairs

3. Token Classifier: fill in tokens replacing all the placeholders.



Dual-policy Learning

Roll-in policyRoll-in policy

Expert policy Expert policy

suggested actions



Roll-in Policy
• Learning to Delete

initial input output by applying insertion

mixture factor any sequence ready to insert tokens

obtained by sampling instead of 
doing argmax𝑢~𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1]

• Learning to Insert

𝑢~𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1] random word dropping sequence of the round-truthdeletion output



Expert Policy
• Oracle:

• Teacher Model:
• first train an autoregressive teacher model using the same 

datasets and then replace the ground-truth sequence 𝑦∗ by the 
beam-search result of this teacher-model, 𝑦��

Levenshtein distance



Conclusion

InserWon transformer Non-Monotonic

InDIGO Levenshtein
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