
Non-Autoregressive
Decoding

Xiachong Feng

Outline
• Transformer
• The Importance of Generation Order in Language Modeling EMNLP18
• Insertion Transformer:

Flexible Sequence Generation via Insertion Operations ICML19
• Non-Monotonic Sequential Text Generation ICML19
• Insertion-based Decoding with automatically Inferred Generation

Order
• Levenshtein Transformer
• Conclusion
• Paper List
• Reference

Transformer

Transformer

Scaled Dot-Product Attention

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Example

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Mul=-Head A?en=on

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Transformer

hEps://cips-upload.bj.bcebos.com/ssaE2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

The Importance of Generation
Order in Language Modeling

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George E. Dahl
Google Brain

EMNLP18

Overview
• Linguistic intuition might suggest that we should first generate some

abstract representation of what we want to say and then serialize it.

• The best ordering we tried generates function words first and content
words last, which cuts against the idea of committing to the general
topic of a sentence first and only then deciding exactly how to phrase
it.

Two-pass Language Models
• Produces partially-filled sentence “templates” and then fills in missing

tokens
• Partitioning of the vocabulary into a set of first-pass and second-pass

tokens to generate sentences.

𝑦
𝑦(#)

𝑦(%)

Template:first-pass tokens + a special placeholder token

Second-pass tokens

Two-pass Language Models

• Two copies of the Transformer model
• Neural language model 𝒑𝟏 : The first copy just generates

the template, so it has no encoder.
• Condi=onal transla=on model 𝒑𝟐 : The second copy is a

sequence-to-sequence model that translates the template
into the complete sentence.

Sentenceàtemplate templateàfinal
no encoder Seq2Seq

Two-pass Language Models
template

Results
• It is easier to first decide something about its syntacWc structure.
• It is preferable to delay commiXng to a rare token for as long as possible as all

subsequent decisions will then be condiWoning on a low-probability event.

Insertion Transformer:
Flexible Sequence Generation

via Insertion Operations
Mitchell Stern, William Chan, Jamie Kiros, Jakob Uszkoreit

Google Brain, University of California, Berkeley
ICML19

Inser=on Transformer
• 𝑥 : source canvas (sequence)
• 𝑦 : target canvas (sequence)
• *𝑦+ : hypothesis canvas at time t
• 𝒞 : content vocabulary (token vocabulary for sequences)
• 𝑙 : locations ∈ [0, | *𝑦+|]

Insertion Transformer Model
• Full Decoder Self-Attention
• Remove causal self attention

• Slot Representations via Concatenated Outputs
• Adding special marker tokens at the beginning and end of the

decoder input to extend the sequence length by two.
• Take the resulting n + 2 vectors in the final layer and concatenate

each adjacent pair to obtain n + 1 slot representations.

Model

• Joint content-loca=on distribu=on

• Joint distribu=on using a condi=onal factoriza=on

matrix of slot representations

learnable query vector 𝑙-th row of H

flatten this matrix into a vector

Contextualized Vocabulary Bias

context vector

shared bias

Global bias

Training and Loss Functions
• LeQ-to-Right
• Example : (x, y)
• Sample a length 𝑘~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0, 𝑦
• Create a new data point ((x, =𝑦 = (𝑦#, … , 𝑦@)), 𝑦@A#)
• Loss : classificaWon loss (negaWve log-likelihood)
• Note : only concerns about the last posiLon to insert

Balanced Binary Tree
• Parallelism

Balanced Binary Tree
• Example : (𝑥, 𝑦)
• Sample a length 𝑘~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0, 𝑦
• Sample a random subsequence of 𝑦 of length 𝑘： =𝑦

1. Shuffle 𝑦
2. Extract the first 𝑘
3. Reorder

Soft binary tree loss

𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5

𝑦GH 𝑦GHIJ 𝑦KH…

span of tokens from the target
output yet to be produced

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ↓
𝑤T(𝑖) ↑

Uniform

Balanced binary tree and uniform losses

Greedy Decoding
• Choose the action with the highest probability

• sequence finalization
• until an end-of-sequence token gets selected

• slot finalization
• restrict the argmax to locations whose maximum-probability

decision is not end-of-slot
• Until the model predicts an end-of-slot token for every location.

Parallel Decoding
• For each location 𝑙

• slot finalization

：

joint distribuWon

factorization

Non-Monotonic Sequential
Text Generation

Sean Welleck , Kiante ́ Brantley, Hal Daume ́ III, Kyunghyun Cho

New York University, University of Maryland, College Park
Microsoe Research, Facebook AI Research

CIFAR Azrieli Global Scholar

ICML19

Overview
• Recursively generaWng words to its lee and then words to its right,

yielding a binary tree.
• Learning is framed as imitaWon learning, including a coaching method

which moves from imitaWng an oracle to reinforcing the policy’s own
preferences

Level-order In-order

Imita=on Learning
• Imitation Learning with Recurrent Neural Networks
• Learning to Search Better than Your Teacher ICML15
• https://zhuanlan.zhihu.com/p/25688750
• https://blog.csdn.net/WASEFADG/article/details/83651126
• https://www.quora.com/What-is-imitation-learning

https://zhuanlan.zhihu.com/p/25688750
https://blog.csdn.net/WASEFADG/article/details/83651126
https://www.quora.com/What-is-imitation-learning

Notation
• Vocabulary V𝑉 = 𝑉 ∪ < 𝑒𝑛𝑑 >
• State space V𝑉∗

• State 𝑠 ∈ 𝑆 corresponds to a sequence of tokens from V𝑉
• Init state: empty sequence <>
• End state: < 𝑒𝑛𝑑 >
• AcWon 𝑎 : select an element from vocab and append to the state
• 𝜏(𝑡): maps from in-order to level order
• Policy 𝜋(𝑎|𝑠)

Challenge

• The sequences 𝑌 alone only tell us what the final output sequences of
words should be, but not what tree(s) should be used to get there.

Imitation Learning
• The first step, an oracle policy’s acWon is to produce any word 𝑤 that appears anywhere in 𝑌.
• All words to the lee of 𝑤 in 𝑌 are generated recursively on the lee (following the same

procedure), and all words to the right of 𝑤 in 𝑌 are generated recursively on the right.
• The oracle is non-determinisWc (many “correct” acWons are available at any given Wme), we

inform this oracle policy with the current learned policy, encouraging it to favor acWons that are
preferred by the current policy.

Background: Learning to Search

Learning to Search Better than Your Teacher ICML15

Loss
• 3 𝔼
• draw states 𝑠 according to the state distribuWon induced by 𝜋Gb
• compute cost-to-go under 𝜋cd+, for all possible acWons 𝑎 at that

state.
• 2 𝔼
• running 𝜋 for t-many steps

• 1 𝔼
• for one instance

321

Cost Measurement
• when dealing with recurrent neural network policies using a cost

funcWon more analogous to a cross-entropy loss can be preferred
• use a KL-divergence type loss, measuring the difference between the

acWon distribuWon produced by 𝜋 and the acWon distribuWon
preferred by 𝜋cd+.
• first sampling one training sequence, running the roll-in policy for t

steps, and compuWng the KL divergence at that state
using 𝜋∗ (reference 𝑜𝑟 oracle)as 𝜋cd+. Learning corresponds to
minimizing this KL divergence iteraWvely with respect to the
parameters of 𝜋.

Roll-In Policies
• In most formal analyses, the roll-in policy is a stochastic mixture of

the learned policy 𝜋 and the oracle policy 𝜋∗

• Experimentally, it has often been found that simply using the oracle’s
state distribution is optimal

Learning to Search BeEer than Your Teacher ICML15

Oracle Policies

• Uniform Oracle. 𝑝f = 1/𝑛
• Coaching Oracle

• preferring acWons that are preferred by the current parameterized policy

• Annealed Coaching Oracle(𝛽 from 1 to 0)

Word Reordering Examples

Inser=on-based Decoding
with automa=cally Inferred

Genera=on Order
JiataoGu, QiLiu, KyunghyunCho

Facebook AI Research
New York University

Motivation
• L2R is not necessarily the optimal option for generating sequences.
• For instance, people sometimes tend to think of central phrases first

before building up a whole sentence.

Orders as Latent Variables
• 𝑃j is the set of all the permutations of (1, … , 𝑇)
• 𝜋 = (𝑧%, 𝑧m, … 𝑧j, 𝑧jA#) ∈ 𝑃j
• 𝑦n = { 𝑦%, 𝑧% , … , (𝑦jA#, 𝑧jA#)}, (𝑦j, 𝑧j) represents the 𝑡 −
𝑡ℎ generated token and its absolute position
• Two special tokens
• 𝑦s, 𝑧s = < 𝑠 >, 0 、 𝑦#, 𝑧# = (</𝑠 >, 𝑇 + 1)

• Object

𝑦jA% =< 𝑒𝑜𝑑 >

Relative Representation of Positions
• 𝑟G+: the relaWve-posiWon representaWons of token 𝑖 at decode step 𝑡
• 𝑟G+ is a vector
• Value : 0, 1, -1

• Matrix 𝑅+ = [𝑟s+, 𝑟#+, … , 𝑟++] shows the relaWve-posiWon
representaWons of all the words in the sequence.
• Mapped back to the absolute posiWon
• Update

Inser=on-based Decoding
• Given𝑦s:+ and 𝑟s:+
• Predict 𝑦+A# and 𝑟+A#
• Note : only concerns about the 𝑦@ which has been selected
• 𝑠 = −1 if 𝑦+A# is on the left of 𝑦@, and 𝑠 = 1 otherwise.

Insertion-based Decoding

Transformer-InDIGO
• Relative position-based self-attention

Transformer-InDIGO
• Word & Position Prediction

Transformer-InDIGO

Learning
• This is intractable since we need to enumerate all of the
𝑇! permutations of tokens.
• Maximize the evidence lower-bound (ELBO) of the original objective

by introducing an approximate posterior distribution of generation
orders 𝑞(𝜋|𝑥, 𝑦), which provides the probabilities of latent generation
orders based on the ground-truth sequences 𝑥 and 𝑦:

Searched Adaptive Order (SAO)
• beam-search in the space of all the permutaWons of the target

sequence
• Sub-sequence：
• Lee words：
• corresponding posiWon
• select top-B sub-sequences as the new set B for the next step.

Levenshtein Transformer
Jiatao Gu, Changhan Wang, and Jake Zhao (Junbo)

Facebook AI Research
New York University

Tigerobo Inc

Levenshtein Distance
4 = Levenshtein Distance(Saturday, Sundays)

1. Saturday → Sturday // delete the first a
2. Sturday → Surday // delete the first t
3. Surday → Sunday // replace r with n
4. Sunday → Sundays // add s at the end

Overview
• Humans can revise, replace, revoke or delete any part of their

generated text.
• Atomic operations : insertion and deletion
• Not only generation but also sequence refinement allowing dynamic

length changes.
• Partially autoregressive model

Problem Formulation
• Markov Decision Process (MDP)

Agent Environment
𝜀

Edit acWon 𝑎 ∈ 𝐴: {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}

𝑦 ∈ 𝑉{|}~: 𝑓𝑟𝑜𝑚 𝑠𝑐𝑟𝑎𝑡𝑐ℎ, 𝑢𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑠𝑒𝑞 , 𝑦s ∈ 𝑦 𝑖𝑛𝑖𝑡 𝑠𝑒𝑞

𝑃𝑜𝑙𝑖𝑐𝑦 𝜋: y → 𝑃(𝐴)

Reward function : 𝑅 𝑦 = −𝐷(𝑦, 𝑦∗)

𝑟

Actions

𝑎 ∈ 𝐴: {𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒}

<s> </s>

Dele=on
• makes a binary decision which is 1 (delete this token) or

0 (keep it)
• Avoid sequence boundary being broken

Insertion
• placeholder predicWon and token predicWon
• All locaWons
• the possibility of adding one or several placeholders
• for every placeholder predicted as above, replaces the

placeholders with actual tokens in the vocabulary

Policy combination
• delete tokens – insert placeholders - replace placeholders with new

tokens
• parallelize the computaWon within each sub-tasks.

Levenshtein Transformer

Levenshtein Transformer
• Decoder output : (ℎs, ℎ#,… ℎb), passed to three policy classifiers
1. Dele=on Classifier: scans over the input tokens (except for the

boundaries) and predict “deleted” (0) or “kept” (1) for each token
posiWon

2. Placeholder Classifier: predicts the number of tokens to be inserted
at every consecuWve posiWon pairs

3. Token Classifier: fill in tokens replacing all the placeholders.

Dual-policy Learning

Roll-in policyRoll-in policy

Expert policy Expert policy

suggested actions

Roll-in Policy
• Learning to Delete

initial input output by applying insertion

mixture factor any sequence ready to insert tokens

obtained by sampling instead of
doing argmax𝑢~𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1]

• Learning to Insert

𝑢~𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1] random word dropping sequence of the round-truthdeletion output

Expert Policy
• Oracle:

• Teacher Model:
• first train an autoregressive teacher model using the same

datasets and then replace the ground-truth sequence 𝑦∗ by the
beam-search result of this teacher-model, 𝑦��

Levenshtein distance

Conclusion

InserWon transformer Non-Monotonic

InDIGO Levenshtein

Paper List

Reference
•香侬读 | 按什么套路生成？基于插入和删除的序列生成方法

hwps://zhuanlan.zhihu.com/p/73417154
• hwps://cips-upload.bj.bcebos.com/ssaw2019/CIPS_SSATT_2019_问答
系统_唐都钰_段楠.pdf

https://zhuanlan.zhihu.com/p/73417154

Thanks!

