Non-Autoregressive Decoding

Xiachong Feng

Outline

- Transformer
- The Importance of Generation Order in Language Modeling *EMNLP18*
- Insertion Transformer: Flexible Sequence Generation via Insertion Operations *ICML19*
- Non-Monotonic Sequential Text Generation *ICML19*
- Insertion-based Decoding with automatically Inferred Generation Order
- Levenshtein Transformer
- Conclusion
- Paper List
- Reference

Transformer

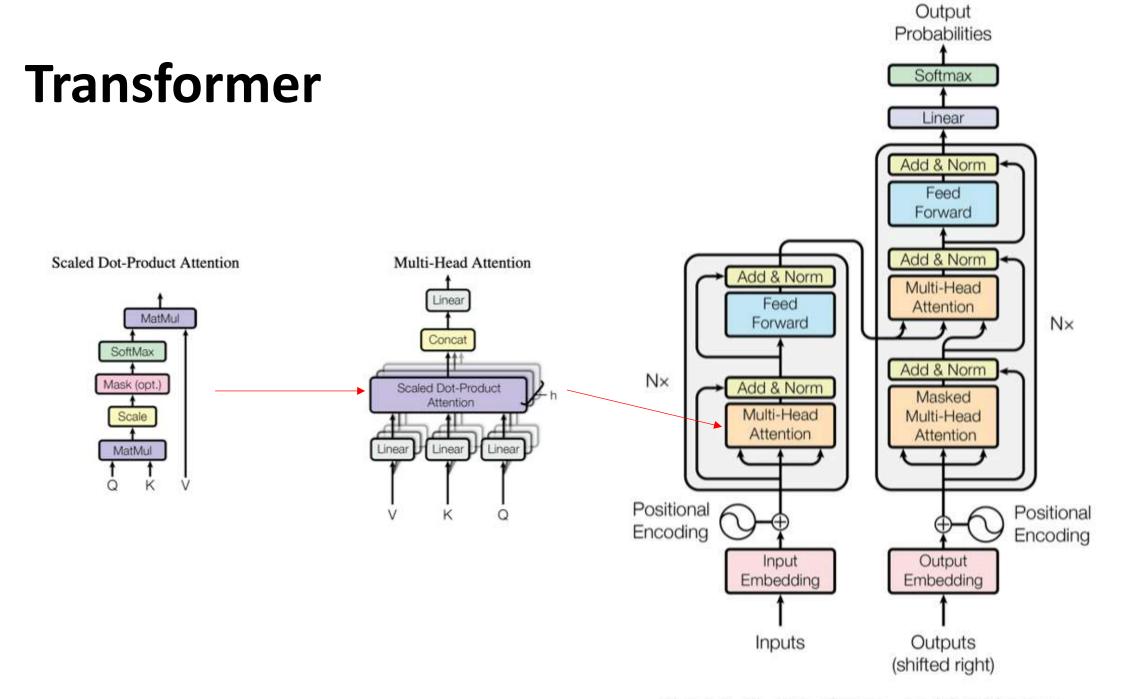
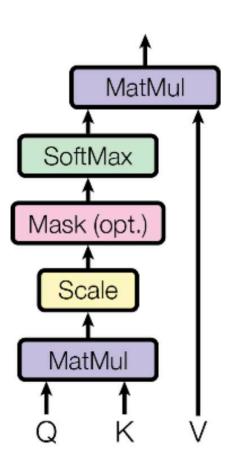


Figure 1: The Transformer - model architecture.

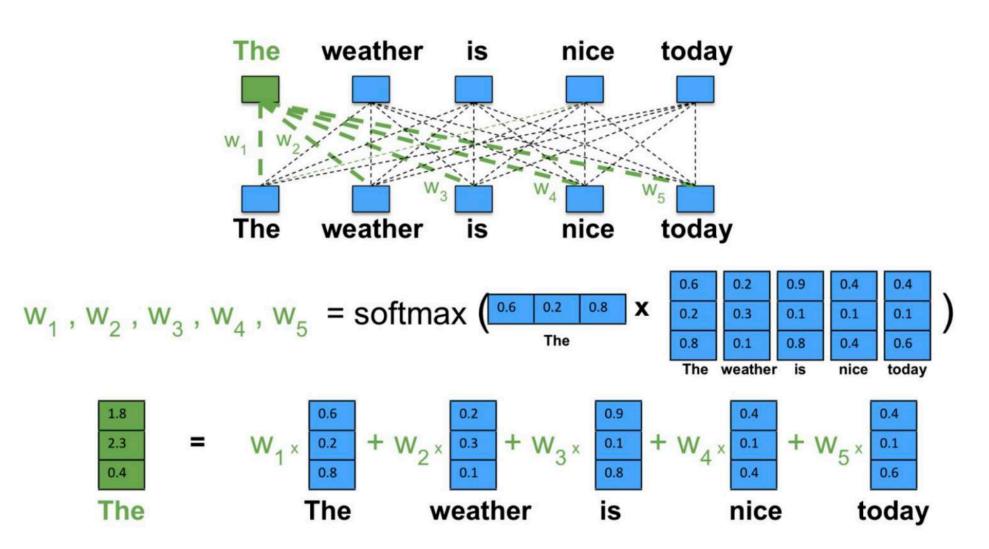
Scaled Dot-Product Attention



Attention(Q, K, V) = softmax $\begin{pmatrix} QK^T \\ \sqrt{d_k} \end{pmatrix}$ V For large values of d_k , the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients. To counteract this effect, the dot products are scaled by $\frac{1}{\sqrt{d_k}}$.

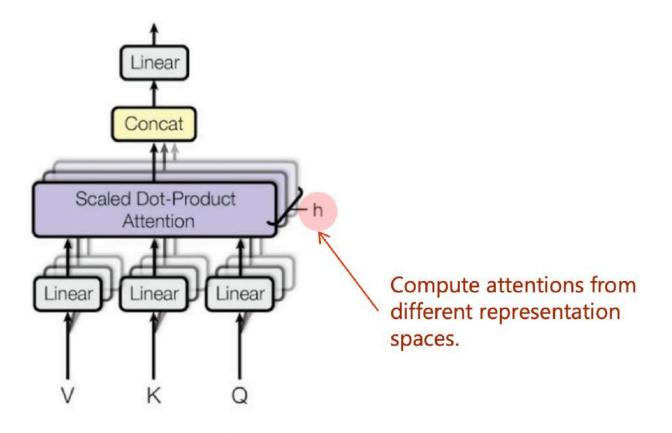
https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Example



https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Multi-Head Attention

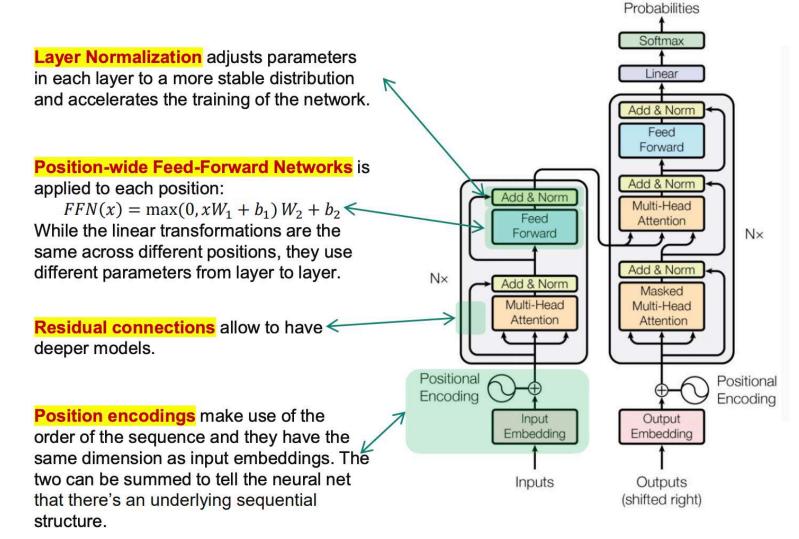


 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^0$

https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Transformer



https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf

Output

The Importance of Generation Order in Language Modeling

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George E. Dahl Google Brain EMNLP18

Overview

- Linguistic intuition might suggest that we should first generate some <u>abstract representation</u> of what we want to say and <u>then serialize it.</u>
- The best ordering we tried generates <u>function words first</u> and <u>content</u> <u>words last</u>, which cuts against the idea of committing to the general topic of a sentence first and only then deciding exactly how to phrase it.

Two-pass Language Models

- Produces partially-filled sentence "templates" and then fills in missing tokens
- Partitioning of the vocabulary into a set of <u>first-pass</u> and <u>second-pass</u> tokens to generate sentences.

sentence	common first
" all you need to do if you want the na- tion 's press camped on your doorstep is to say you once had a [UNK] in 1947, " he noted memorably in his diary. [EOS]	" all you to if you the 's on is to you had a [UNK] in , " he in his [EOS]

- $y^{(1)}$ Template:first-pass tokens + a special placeholder token
 - Second-pass tokens

y

Two-pass Language Models

- Two copies of the Transformer model
 - Neural language model p_1 : The first copy just generates the template, so it has no encoder.
 - Conditional translation model p_2 : The second copy is a sequence-to-sequence model that translates the template into the complete sentence.

$$p(\mathbf{y}) = p_1(\mathbf{y}^{(1)}) p_2(\mathbf{y}^{(2)} | \mathbf{y}^{(1)}) .$$

Sentence \rightarrow template template \rightarrow final
no encoder Seq2Seq

Two-pass Language Models

template

sentence	common first	rare first	function first	content first	odd first	
" all you need to do if you want the na- tion 's press camped on your doorstep is to say you once had a [UNK] in 1947, " he noted memorably in his diary. [EOS]	" all you to if you the 's on is to you had a [UNK] in ," he in his [EOS]	need do want nation press camped your doorstep say once 1947 noted memorably diary [EOS]	" all you to if you the 's on your is to you a in , " he in his [EOS]	want need do want nation press camped doorstep say once had [UNK] 1947 noted memorably diary [EOS]	" all you need you the nation 's press camped on your doorstep say you once had say you " noted his [EOS]	
the team announced thursday that the 6- foot-1, [UNK] starter will remain in detroit through the 2013 sea- son. [EOS]	the that the , [UNK] will in the [EOS]	team announced thursday 6-foot-1 starter remain detroit through 2013 season [EOS]	the that the , will in through the [EOS]	Leam announced thursday 6-foot-1 [UNK] starter remain detroit 2013 season [EOS]	the team announced the 6-foot-1 will remain through the 2013 [EOS]	
scotland 's next game is a friendly against the czech republic at hampden on 3 march. [EOS]	's is a the at on [EOS]	scotland next game friendly against czech republic ham- pden 3 march [EOS]	's is a against the at on [EOS]	scotland next game friendly czech republic ham- pden 3 march [EOS]	's next game the czech republic at hampden on 3 march . [EOS]	
of course, millions of additional homeown- ers did make a big mis- take : they took ad- vantage of " liar loans " and other [UNK] deals to buy homes they couldn 't afford . [EOS]	of , of of a : they of " " and [UNK] to they 't [EOS]	course millions additional homeown- ers did make big mistake took ad- vantage liar loans other deals buy homes couldn afford [EOS]	of, of a : they of " " and to they [EOS]	course millions additional home- owners did make big mistake took advantage liar loans other [UNK] deals buy homes couldn 't afford [EOS]	of of additional advantage of "liar" and other deals buy homes they couldn afford . [EOS]	

Table 1: Some example sentences from the dataset and their corresponding templates. The placeholder token is indicated by "__".

Results

- It is easier to first decide something about its syntactic structure.
- It is preferable to delay committing to a rare token for as long as possible as all subsequent decisions will then be conditioning on a low-probability event.

	Model	Train	Validation	Test
	odd first	39.925	45.377	45.196
	rare first	38.283	43.293	43.077
	content first	38.321	42.564	42.394
_	common first	36.525	41.018	40.895
	function first	36.126	40.246	40.085
	baseline	38.668	41.888	41.721
	enhanced baseline	35.945	39.845	39.726
		•07	,	,

Table 2: The perplexities achieved by the best version of each of our models.

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Mitchell Stern, William Chan, Jamie Kiros, Jakob Uszkoreit Google Brain, University of California, Berkeley ICML19

Insertion Transformer

- *x* : source canvas (sequence)
- *y* : target canvas (sequence)
- \hat{y}_t : hypothesis canvas at time t
- C : content vocabulary (token vocabulary for sequences)
- l : locations $\in [0, |\hat{y}_t|]$

Insertion Transformer: Flexible Sequence Generation via Insertion Operations

Serial generation:			Parallel generation:		
t	Canvas	Insertion	t	Canvas	Insertions
0	0	(ate, 0)	0	0	(ate, 0)
1	[ate]	(together, 1)	1	[ate]	(friends, 0), (together, 1)
2	[ate, together]	(friends, 0)	2	[friends, ate, together]	(three, 0), (lunch, 2)
3	[friends, ate, together]	(three, 0)	3	[three, friends, ate, lunch, together]	$(\langle EOS \rangle, 5)$
4	[three, friends, ate, together]	(lunch, 3)			
5	[three, friends, ate, lunch, together]	$(\langle \text{EOS} \rangle, 5)$			

 $p(c, l \mid x, \hat{y}_t) = \text{InsertionTransformer}(x, \hat{y}_t).$

Insertion Transformer Model

- Full Decoder Self-Attention
 - Remove causal self attention
- Slot Representations via Concatenated Outputs
 - Adding special marker tokens at the beginning and end of the decoder input to extend the sequence length by two.
 - Take the resulting n + 2 vectors in the final layer and concatenate each adjacent pair to obtain n + 1 slot representations.

Model

 $p(c, l \mid x, \hat{y}_t) = \text{InsertionTransformer}(x, \hat{y}_t).$

Joint content-location distribution

$$p(c, l) = \text{softmax}(\text{flatten}(HW))$$

 $H \in \mathbb{R}^{(T+1) imes h}$ matrix of slot representations $W \in \mathbb{R}^{h imes |\mathcal{C}|}$

• Joint distribution using a conditional factorization

$$p(c,l) = p(l)p(c|l) = ext{softmax}(Hq) imes ext{softmax}(h_l W)$$
learnable query vector l -th row of H

Contextualized Vocabulary Bias

context vector g = maxpool(H) $g \in \mathbb{R}^{h}$ shared bias b = gV $V \in \mathbb{R}^{h \times |\mathcal{C}|}$ B = repmat(b, [T + 1, 1])p(c, l) = softmax(HW + B)

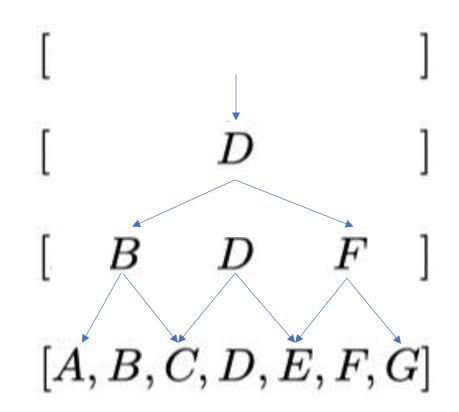
Training and Loss Functions

- Left-to-Right
 - Example : (x, y)
 - Sample a length $k \sim uniform([0, |y|])$
 - Create a new data point $((x, \hat{y} = (y_1, ..., y_k)), y_{k+1})$
 - Loss : classification loss (negative log-likelihood)
 - Note : only concerns about <u>the last position</u> to insert

$$loss(x, \hat{y}) = -\log p(y_{k+1}, k \mid x, \hat{y})$$

Balanced Binary Tree

• Parallelism



Balanced Binary Tree

- Example : (x, y)
- Sample a length $k \sim uniform([0, |y|])$
- Sample a random subsequence of y of length $k: \hat{y}$
 - 1. Shuffle *y*
 - 2. Extract the first k
 - 3. Reorder

A B C D E F G H I J K L M N O

Soft binary tree loss

Uniform

$$w_l(i) = \frac{\exp(-d_l(i)/\tau)}{\sum_{i'=i_l}^{j_l} \exp(-d_l(i')/\tau)} \quad \tau \to \infty$$

slot-loss $(x, \hat{y}, l) = \frac{1}{j_l - i_l + 1} \sum_{i=i_l}^{j_l} -\log p(y_i, l \mid x, \hat{y}).$

Balanced binary tree and uniform losses

Figure 2. A visualization of the weighting of the per-token negative log-likelihoods in the balanced binary tree and uniform losses. The balanced binary tree loss strongly incentivizes the generation of the center word or center words within each slot.

Greedy Decoding

• Choose the action with the highest probability

$$(\hat{c}_t, \hat{l}_t) = \operatorname*{argmax}_{c,l} p(c, l \mid x, \hat{y}_t).$$

- sequence finalization
 - until an <u>end-of-sequence</u> token gets selected

slot finalization

- restrict the argmax to locations whose <u>maximum-probability</u> decision is not end-of-slot
- Until the model predicts an <u>end-of-slot</u> token for every location.

Parallel Decoding

• For each location *l*

$$p(c \mid l) : \hat{c}_{l,t} = \operatorname*{argmax}_{c} p(c \mid l, x, \hat{y}_{t}).$$

 $p(c \mid l) = p(c,l)/p(l) = p(c,l)/\sum_{c'} p(c',l)$
joint distribution $p(c,l) = p(l)p(c|l) = \operatorname{softmax}(Hq) \times \operatorname{softmax}(h_{l}W)$
 $p(c,l) = \operatorname{softmax}(\operatorname{flatten}(HW)).$ factorization

slot finalization

 $p(c \mid$

Non-Monotonic Sequential Text Generation

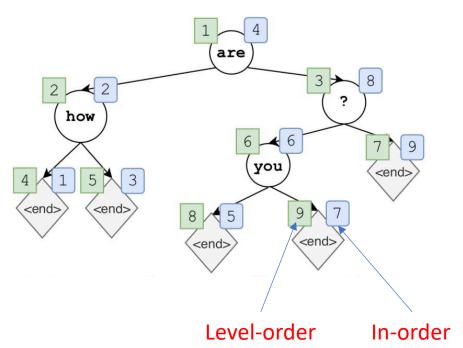
Sean Welleck , Kiante Brantley, Hal Daume III, Kyunghyun Cho

New York University, University of Maryland, College Park Microsoft Research, Facebook AI Research CIFAR Azrieli Global Scholar

ICML19

Overview

- Recursively generating words to its left and then words to its right, yielding a binary tree.
- Learning is framed as <u>imitation learning</u>, including a coaching method which moves from imitating an oracle to reinforcing the policy's own preferences



Imitation Learning

- Imitation Learning with Recurrent Neural Networks
- Learning to Search Better than Your Teacher ICML15
- https://zhuanlan.zhihu.com/p/25688750
- <u>https://blog.csdn.net/WASEFADG/article/details/83651126</u>
- <u>https://www.quora.com/What-is-imitation-learning</u>

Notation

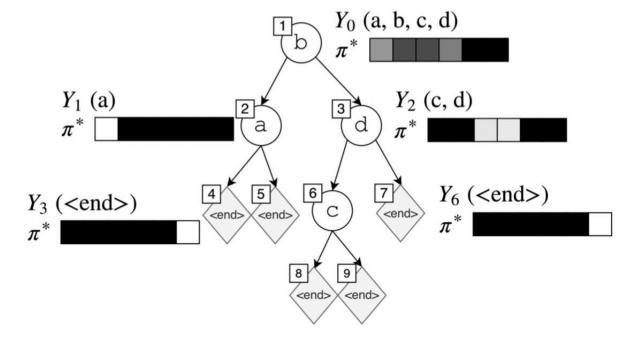
- Vocabulary $\tilde{V} = V \cup \{ < end > \}$
- State space \tilde{V}^*
- State $s \in S$ corresponds to a sequence of tokens from \tilde{V}
- Init state: empty sequence <>
- End state: < *end* >
- Action *a* : select an element from vocab and append to the state
- $\tau(t)$: maps from in-order to level order
- Policy $\pi(a|s)$

Challenge

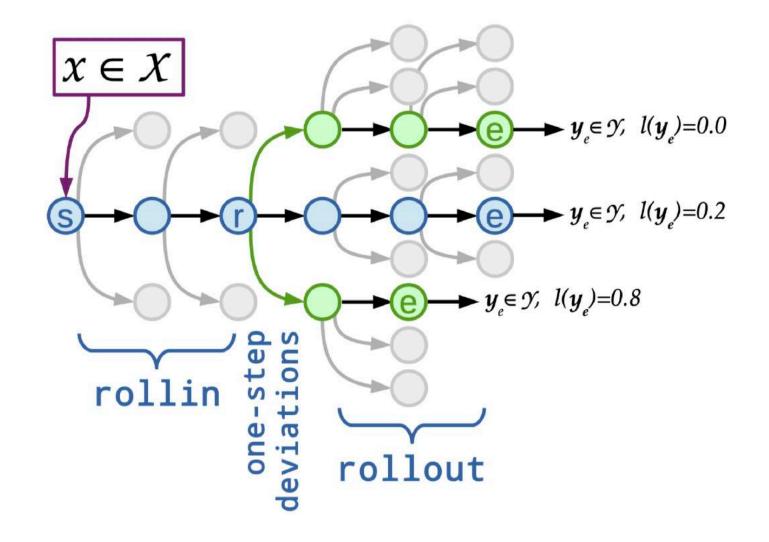
• The sequences Y alone only tell us what the final output sequences of words should be, but not what tree(s) should be used to get there.

Imitation Learning

- The first step, an oracle policy's action is to produce any word w that appears anywhere in Y.
- All words to the left of w in Y are generated recursively on the left (following the same procedure), and all words to the right of w in Y are generated recursively on the right.
- The oracle is <u>non-deterministic</u> (many "correct" actions are available at any given time), we inform this oracle policy with the current learned policy, encouraging it to favor actions that are preferred by the current policy.



Background: Learning to Search



Learning to Search Better than Your Teacher ICML15

Loss

- 3 E
 - draw states s according to the state distribution induced by π^{in}
 - compute cost-to-go under π^{out} , for all possible actions a at that state.
- 2 E
 - running π for t-many steps
- 1 E
 - for one instance

$$\frac{\mathbb{E}_{Y \sim D} \mathbb{E}_{t \sim U[2|Y|+1]} \mathbb{E}_{s_t \sim d_{\pi^{\text{in}}}^t}}{2} \left[\mathcal{C}(\pi; \pi^{\text{out}}, s_t) \right]$$

Cost Measurement

- when dealing with recurrent neural network policies using a cost function more analogous to a <u>cross-entropy loss</u> can be preferred
- use <u>a KL-divergence type loss</u>, measuring the difference between the <u>action distribution produced by π and the <u>action distribution</u> preferred by π^{out} .</u>
- first sampling one training sequence, running the roll-in policy for t steps, and computing the KL divergence at that state using π^* (reference *or* oracle) as π^{out} . Learning corresponds to minimizing this KL divergence iteratively with respect to the parameters of π .

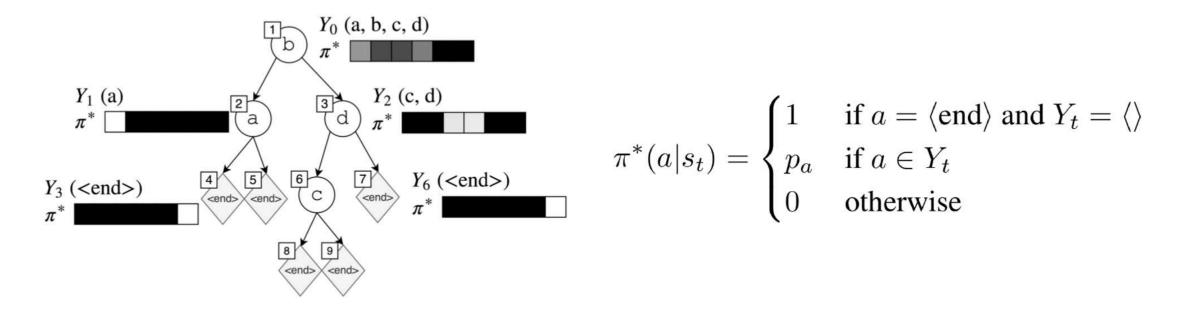
$$\mathcal{C}(\pi; \pi^{\text{out}}, s) = D_{\text{KL}} \left(\pi^{\text{out}}(\cdot|s) || \pi(\cdot|s) \right)$$
$$= \sum_{a \in \tilde{V}} \pi^{\text{out}}(a|s) \log \pi(a|s) + const$$

Roll-In Policies

- In most formal analyses, the roll-in policy is a stochastic mixture of the learned policy π and the oracle policy π^*
- Experimentally, it has often been found that simply using the oracle's state distribution is optimal

$\text{roll-out} \rightarrow$	Reference	Mixture	Learned
↓ roll-in	Kelefence		
Reference	Inconsistent		
Learned	Not locally opt.	Good	RL

Oracle Policies



- Uniform Oracle. $p_a = 1/n$
- Coaching Oracle
 - preferring actions that are preferred by the current parameterized policy

 $\pi^*_{\text{coaching}}(a|s) \propto \pi^*_{\text{uniform}}(a|s) \pi(a|s)$

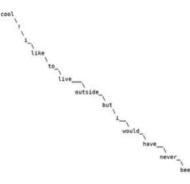
Annealed Coaching Oracle(β from 1 to 0)

$$\pi^*_{\text{annealed}}(a|s) = \beta \pi^*_{\text{uniform}}(a|s) + (1-\beta)\pi^*_{\text{coaching}}(a|s)$$

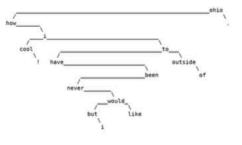
Word Reordering Examples

Figure 8. Word Reordering Examples. The columns show policies trained with $\pi^*_{\text{left-right}}$, π^*_{uniform} , and π^*_{annealed} , respectively.

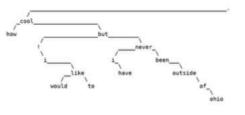
Actual: how cool ! i have never been outside of ohio but i would like to . Predicted: cool ! i like to live outside but i would have never been of ohio . Gen. Order: cool ! i like to live outside but i would have never been of ohio .



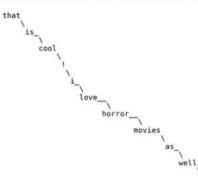
Actual: how cool | i have never been outside of ohio but i would like to . Predicted: how cool | i have never but i would like been to outside of ohio . Gen. Order: ohio how . i cool to | have outside been of never would but like i



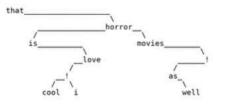
Actual: how cool ! i have never been outside of ohio but i would like to . Predicted: how cool ! i would like to but i have never been outside of ohio . Gen. Order: . cool how but ! never i i been like have outside would to of ohio



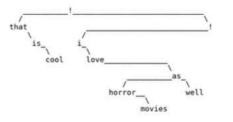
Actual: that is cool ! i love horror movies as well ! Predicted: that is cool ! i love horror movies as well ! Gen. Order: that is cool ! i love horror movies as well !



Actual: that is cool ! i love horror movies as well ! Predicted: that is cool ! i love horror movies as well ! Gen. Order: that horror is movies love ! ! as cool i well



Actual: that is cool ! i love horror movies as well ! Predicted: that is cool ! i love horror movies as well ! Gen. Order: ! that ! is i cool love as horror well movies



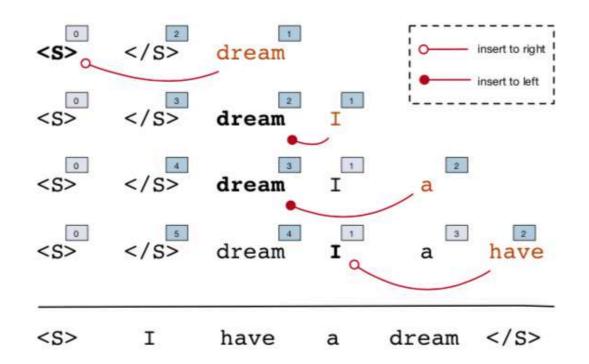
Insertion-based Decoding with automatically Inferred Generation Order

JiataoGu, QiLiu, KyunghyunCho

Facebook AI Research New York University

Motivation

- L2R is not necessarily the optimal option for generating sequences.
- For instance, people sometimes tend to think of central phrases first before building up a whole sentence.



Orders as Latent Variables

- P_T is the set of all the permutations of (1, ..., T)
- $\pi = (z_2, z_3, \dots z_T, z_{T+1}) \in P_T$
- $y_{\pi} = \{(y_2, z_2), ..., (y_{T+1}, z_{T+1})\}, (y_T, z_T)$ represents the t th generated token and its absolute position
- Two special tokens

•
$$(y_0, z_0) = (\langle s \rangle, 0), (y_1, z_1) = (\langle s \rangle, T + 1)$$

Object

$$p_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{\pi} \in \mathcal{P}_{T}} p_{\theta}(\boldsymbol{y}_{\boldsymbol{\pi}}|\boldsymbol{x})$$

$$p_{\theta}(\boldsymbol{y}_{\boldsymbol{\pi}}|\boldsymbol{x}) = p_{\theta}(\underline{y_{T+2}}|y_{0:T+1}, z_{0:T+1}, x_{1:T'}) \cdot \quad y_{T+2} =$$

$$\prod_{t=1}^{T} p_{\theta}(\underline{y_{t+1}, z_{t+1}}|y_{0:t}, z_{0:t}, \underline{x_{1:T'}})$$

Relative Representation of Positions

- r_i^t : the relative-position representations of token *i* at decode step *t*
- r_i^t is a vector • Value : 0, 1, -1 $r_{i,j}^t = \begin{cases} -1 & z_j^t > z_i^t \text{ (left)} \\ 0 & z_j^t = z_i^t \text{ (middle)} \\ 1 & z_j^t < z_i^t \text{ (right)} \end{cases}$
- Matrix $R^t = [r_0^t, r_1^t, ..., r_t^t]$ shows the relative-position representations of all the words in the sequence.
- Mapped back to the absolute position $z_i^t = \sum_{i=0}^t \max(0, r_{i,j}^t)$
- Update

$$R^{t+1} = egin{bmatrix} m{r}_{t+1}^{t+1} \ R^t & ec{1} \ m{r}_{t+1,0}^{t+1} \ -m{r}_{t+1,0}^{t+1} & \cdots & -m{r}_{t+1,t}^{t+1} \ 0 \end{bmatrix}$$

Insertion-based Decoding

- Given $y_{0:t}$ and $r_{0:t}$
- Predict y_{t+1} and r_{t+1}
- Note : only concerns about the y_k which has been selected
- s = -1 if y_{t+1} is on the left of y_k , and s = 1 otherwise.

$$\boldsymbol{r}_{t+1,j} = \begin{cases} s & j = k \\ \boldsymbol{r}_{k,j} & j \neq k \end{cases}, \quad \forall j \in [0,t]$$

Insertion-based Decoding

Algorithm 1 Insertion-based Decoding

Initialize: $\boldsymbol{y} = (\langle \mathbf{s} \rangle, \langle \mathbf{s} \rangle), R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, t = 1$ repeat Predict the next word y_{t+1} based on y, R. if y_{t+1} is $\langle eod \rangle$ then break end if Choose an existing word $y_k \in \boldsymbol{y}$; Choose the left or right (s) of y_k to insert; Obtain the next position r_{t+1} with k, s (Eq. (6)). Update R by appending r_{t+1} (Eq. (5)). Update y by appending y_{t+1} Update t = t + 1until Reach the maximum length Map back to absolute positions π (Eq. (4)) Reorder \boldsymbol{y} : $y_{z_i} = y_i \quad \forall z_i \in \boldsymbol{\pi}, i \in [0, t]$

Transformer-InDIGO

• Relative position-based self-attention

$$e_{i,j} = \frac{\left(\boldsymbol{u}_i^{\top} \boldsymbol{Q}\right) \cdot \left(\boldsymbol{u}_j^{\top} \boldsymbol{K} + \boldsymbol{A}_{[\boldsymbol{r}_{i,j}+1]}\right)^{\top}}{\sqrt{d_{\text{model}}}}$$

$$A \in \mathbb{R}^{3 \times d_{\text{model}}}$$

Transformer-InDIGO

• Word & Position Prediction $H = (h_0, ..., h_t)$

$$p(y_{t+1}, \boldsymbol{r}_{t+1}|H) = p(y_{t+1}|H) \cdot p(\boldsymbol{r}_{t+1}|y_{t+1}, H)$$

$$p_{\text{pointer}}(k|y_{t+1}, H) = p_{\text{word}}(y|H) = \text{softmax}\left((\boldsymbol{h}_{t}^{\top}F) \cdot W^{\top}\right) \quad \text{softmax}\left((\boldsymbol{h}_{t}^{\top}E + W_{[y_{t+1}]}) \cdot \begin{bmatrix} H^{\top}C \\ H^{\top}D \end{bmatrix}^{\top}\right)$$

 $k_{t+1} \in [0, 2t+1]$

Word Prediction

W

Position Prediction

Transformer-InDIGO

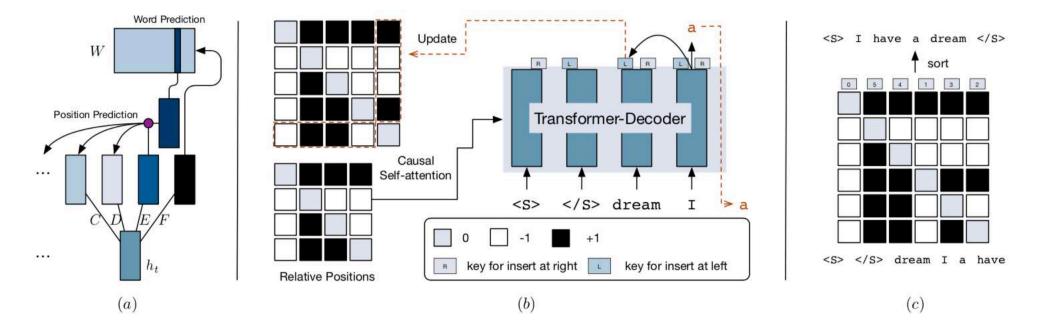


Figure 2: The overall framework of the proposed Transformer-InDIGO which includes (a) the word & position prediction module; (b) the one step decoding with position updating; (c) final decoding output by reordering.

Learning

- This is intractable since we need to enumerate all of the T! permutations of tokens. $p_{\theta}(y|x) = \sum_{x} p_{\theta}(y_{\pi}|x)$
- Maximize the <u>evidence lower-bound (ELBO)</u> of the original objective by introducing an approximate posterior distribution of generation orders $q(\pi|x, y)$, which provides the probabilities of latent generation orders based on the ground-truth sequences x and y:

$$\mathcal{L}_{\text{ELBO}} = \underset{\boldsymbol{\pi} \sim q}{\mathbb{E}} \log p_{\theta}(\boldsymbol{y}_{\boldsymbol{\pi}} | \boldsymbol{x}) + \mathcal{H}(q)$$

$$= \underset{\boldsymbol{r}_{2:T+1} \sim q}{\mathbb{E}} \left(\sum_{t=1}^{T+1} \underbrace{\log p_{\theta}(y_{t+1} | y_{0:t}, \boldsymbol{r}_{0:t}, x_{1:T'})}_{\text{Word Prediction Loss}} + \sum_{t=1}^{T} \underbrace{\log p_{\theta}(\boldsymbol{r}_{t+1} | y_{0:t+1}, \boldsymbol{r}_{0:t}, x_{1:T'})}_{\text{Position Prediction Loss}} \right) + \mathcal{H}(q)$$

Searched Adaptive Order (SAO)

- <u>beam-search</u> in the space of all the permutations of the target sequence
- Sub-sequence : $y_{0:t}^{(b)} \in \mathcal{B}$
- Left words $\therefore y' \in \mathbf{y} ackslash y_{0:t}^{(b)}$
- corresponding position $\ r'$
- select *top-B* sub-sequences as the new set B for the next step.

$$\mathcal{L}_{SAO} = rac{1}{B} \sum_{\pi \in \mathcal{B}} \log p_{ heta}(oldsymbol{y}_{oldsymbol{\pi}} | oldsymbol{x})$$
 $q(oldsymbol{\pi} | oldsymbol{x}, oldsymbol{y}) = egin{cases} 1/B & oldsymbol{\pi} \in \mathcal{B} \ 0 & ext{otherwise} \end{cases}$

Levenshtein Transformer

Jiatao Gu, Changhan Wang, and Jake Zhao (Junbo)

Facebook AI Research New York University Tigerobo Inc

Levenshtein Distance

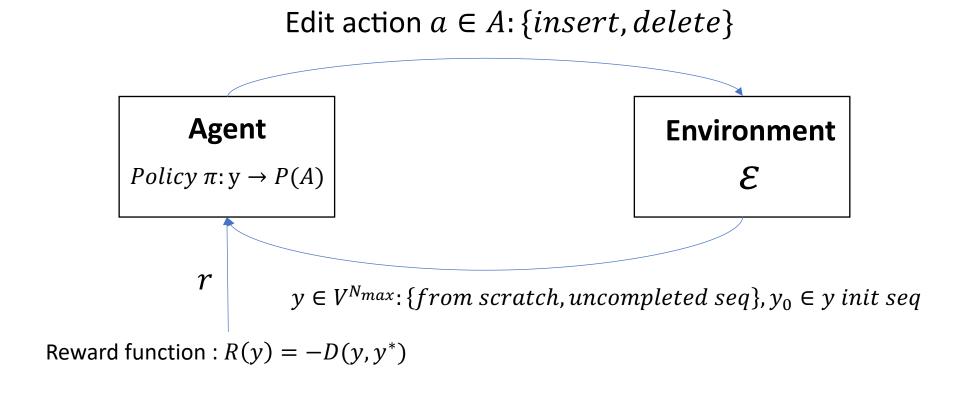
- 4 = Levenshtein Distance(Saturday, Sundays)
- 1. Saturday \rightarrow Sturday // delete the first a
- 2. Sturday \rightarrow Surday // delete the first t
- 3. Surday \rightarrow Sunday // replace r with n
- 4. Sunday \rightarrow Sundays // add s at the end

Overview

- Humans can revise, replace, revoke or delete any part of their generated text.
- Atomic operations : insertion and deletion
- Not only generation but also sequence refinement allowing dynamic length changes.
- Partially autoregressive model

Problem Formulation

• Markov Decision Process (MDP) $(\mathcal{Y}, \mathcal{A}, \mathcal{E}, \mathcal{R}, \boldsymbol{y_0})$



Actions

Deletion

- $\pi^{
 m del}(d|i,m{y})$ makes a binary decision which is 1 (delete this token) or 0 (keep it)
- Avoid sequence boundary being broken $\pi^{\text{del}}(0|1, \boldsymbol{y}) = \pi^{\text{del}}(0|n, \boldsymbol{y})$

Insertion

- placeholder prediction and token prediction
- All locations (y_i, y_{i+1}) in $oldsymbol{y}$
- $\pi^{\mathrm{plh}}(p|i, \boldsymbol{y})$ the possibility of adding <u>one or several placeholders</u>
- $\pi^{\text{tok}}(t|i, y)$ for every placeholder predicted as above, replaces the placeholders with actual tokens in the vocabulary

Policy combination

- delete tokens insert placeholders replace placeholders with new tokens
- parallelize the computation within each sub-tasks.

$$\boldsymbol{a} = \{\underbrace{d_0, \dots, d_n}_{\boldsymbol{d}}; \underbrace{p_0, \dots, p_{n-1}}_{\boldsymbol{p}}; \underbrace{t_0^1, \dots, t_0^{p_0}, \dots, t_{n-1}^{p_{n-1}}}_{\boldsymbol{t}}\}$$

$$\pi(\boldsymbol{a}|\boldsymbol{y}) = \prod_{d_i \in \boldsymbol{d}} \pi^{\text{del}}(d_i|i, \boldsymbol{y}) \cdot \prod_{p_i \in \boldsymbol{p}} \pi^{\text{plh}}(p_i|i, \boldsymbol{y}') \cdot \prod_{t_i \in \boldsymbol{t}} \pi^{\text{tok}}(t_i|i, \boldsymbol{y}'')$$

Levenshtein Transformer

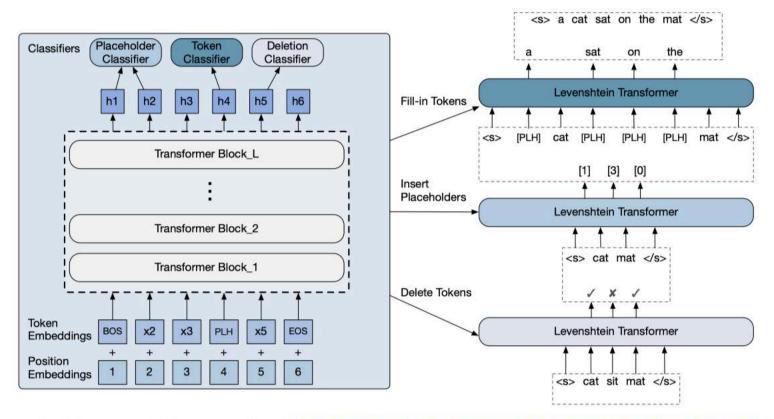


Figure 1: The overall framework of the decoder of the proposed Levenshtein Transformer. We show how the same architecture can be applied for three different tasks with specific classifiers. For simplicity, the attention between the encoder outputs is omitted within each Transformer-Block.

Levenshtein Transformer

- Decoder output : (h_0, h_1, \dots, h_n) , passed to three policy classifiers
- Deletion Classifier: scans over the input tokens (except for the boundaries) and predict "deleted" (0) or "kept" (1) for each token position

$$\pi^{ ext{del}}_{ heta}(d|i,oldsymbol{y}) = ext{softmax}\left(oldsymbol{h}_i\cdot A^ op
ight), \;\; i=1,\ldots n-1$$

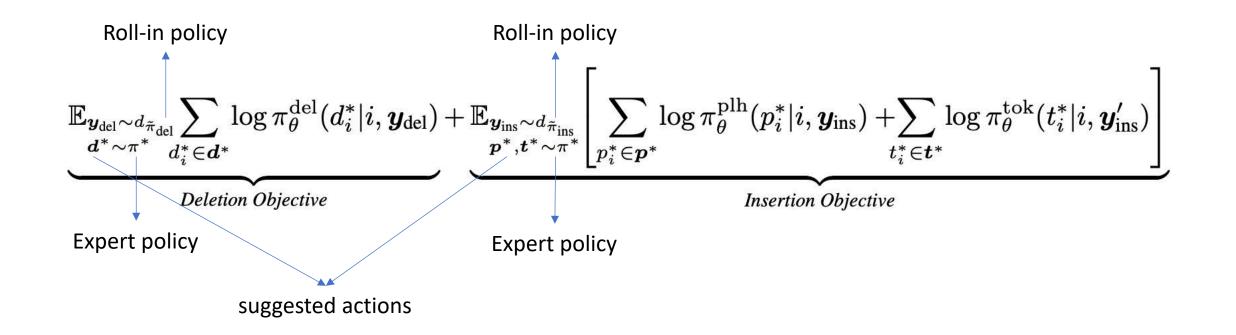
2. Placeholder Classifier: predicts the number of tokens to be inserted at every consecutive position pairs

 $\pi^{\text{plh}}_{\theta}(p|i, \boldsymbol{y}) = \text{softmax}\left(\text{concat}(\boldsymbol{h}_i, \boldsymbol{h}_{i+1}) \cdot B^{\top}\right), \ i = 0, \dots n-1 \ B \in \mathbb{R}^{(K_{\max}+1) \times (2d_{\text{model}})}$

3. Token Classifier: fill in tokens replacing all the placeholders.

$$\pi_{\theta}^{ ext{tok}}(t|i, \boldsymbol{y}) = ext{softmax}\left(\boldsymbol{h}_{i} \cdot C^{ op}\right), \ \forall y_{i} = ext{PLH},$$

Dual-policy Learning



Roll-in Policy

• Learning to Delete

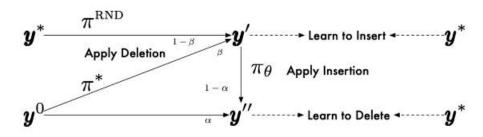


Figure 2: The data-flow of learning.

of

$$d_{\tilde{\pi}_{del}} = \{ \begin{array}{ccc} \boldsymbol{y}^{0} & \text{if } \boldsymbol{u} < \boldsymbol{\alpha} & \text{else} \\ \uparrow & & \uparrow & \\ & & \text{initial input} & u \sim uniform[0,1] \end{array} \xrightarrow{} \left(\begin{array}{ccc} \mathcal{E}\left(\boldsymbol{y}', \boldsymbol{p}^{*}\right), \tilde{\boldsymbol{t}} \right), & \boldsymbol{p}^{*} \sim \pi^{*}, \tilde{\boldsymbol{t}} \sim \pi_{\theta} \\ & & \text{output by applying insertion} \end{array} \right)$$

• Learning to Insert

$$d_{\tilde{\pi}_{\text{ins}}} = \{ \mathcal{E}\left(\boldsymbol{y}^{0}, \boldsymbol{d}^{*}\right), \quad \boldsymbol{d}^{*} \sim \pi^{*} \quad \text{if} \quad \boldsymbol{u} < \beta \quad \text{else} \quad \mathcal{E}\left(\boldsymbol{y}^{*}, \tilde{\boldsymbol{d}}\right), \quad \tilde{\boldsymbol{d}} \sim \pi^{\text{RND}} \}$$

deletion output $u \sim uniform[0,1]$ random word dropping sequence of the round-truth

Expert Policy

• Oracle:

Levenshtein distance

$$oldsymbol{a}^* = rgmin_{oldsymbol{a}} \mathcal{D}(oldsymbol{y}^*, \mathcal{E}(oldsymbol{y}, oldsymbol{a}))$$

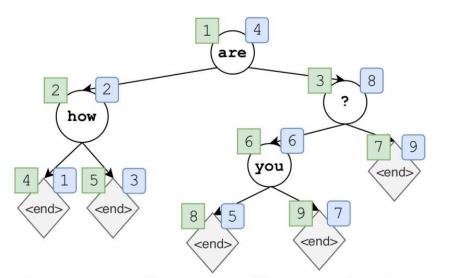
- Teacher Model:
 - first train an autoregressive teacher model using the same datasets and then replace the ground-truth sequence y^{*} by the beam-search result of this teacher-model, y^{AR}

Conclusion

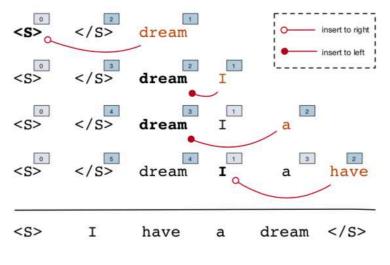
Parallel generation:

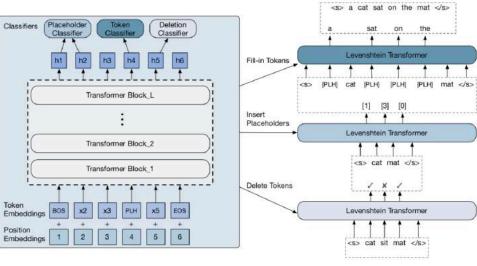
t	Canvas	Insertions
0	0	(ate, 0)
1	[ate]	(friends, 0), (together, 1)
2	[friends, ate, together]	(three, 0), (lunch, 2)
3	[three, friends, ate, lunch, together]	$(\langle EOS \rangle, 5)$

Insertion transformer



Non-Monotonic





InDIGO

Levenshtein

Paper List

Paper	Conference
Levenshtein Transformer	
Insertion-based Decoding with automatically Inferred Generation Order	
KERMIT: Generative Insertion-Based Modeling for Sequences	
Non-Monotonic Sequential Text Generation	ICML19
Insertion Transformer: Flexible Sequence Generation via Insertion Operations	ICML19
Sequence Generation: From Both Sides to the Middle	IJCAI19
Correct-and-Memorize:Learning to Translate from Interactive Revisions	IJCAI19
Non-Autoregressive Neural Machine Translation	ICLR18
The Importance of Generation Order in Language Modeling	EMNLP18

Reference

- 香侬读 | 按什么套路生成?基于插入和删除的序列生成方法 <u>https://zhuanlan.zhihu.com/p/73417154</u>
- https://cips-upload.bj.bcebos.com/ssatt2019/CIPS_SSATT_2019_问答 系统_唐都钰_段楠.pdf

Thanks!